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Foreword

Since the advent of public-key cryptography in 1976 by Diffie and Hellman
many public-key schemes have been devised. Almost all have what are generally
considered to be “hard” mathematical problems as the basis for their security. In
particular, the integer factorization problem and the discrete logarithm problem
are at the heart of several of the most well known techniques.

A few public-key technologies are now being widely deployed commercially
to secure such activities as electronic payment over the Internet, stock trading
from pagers and cell phones, and multi-applications on smart cards. Two of the
more well-known methods are the RSA scheme and the DSA (digital signature
algorithm). The former bases its security on integer factorization and the latter
on the discrete logarithm problem in the multiplicative group of a finite field.
For both of these problems there are subexponential time algorithms, which
means in practice key sizes are forced to exceed 1000 bits to attain adequate se-
curity. For many constrained environments where power, storage and bandwidth
are severely limited it becomes impossible to provide public-key cryptography
through these methodologies.

In 1985 Neal Koblitz and Victor Miller independently proposed elliptic curve
cryptography. The security of this scheme would rest on the difficulty of the dis-
crete logarithm problem in the group formed from the points on an elliptic curve
over a finite field. To date the best method for computing elliptic logarithms
is fully exponential. This translates into much smaller key sizes permitting one
to deploy public-key cryptography on devices where previously it was impossi-
ble. Over the past fourteen years elliptic curve cryptography has been gaining
popularity and it is now being standardized around the world by agencies such
as ANSI, IEEE and ISO. Recently, in January 1999, the elliptic curve version
of the DSA (called the ECDSA) became an ANSI X9.62 standard for the US
financial sector.

Elliptic curve cryptography relies on the elegant but deep theory of elliptic
curves over finite fields. There are, to my knowledge, very few books which
provide an elementary introduction to this theory and even fewer whose mo-
tivation is the application of this theory to cryptography. Andreas Enge has
written a book which addresses these issues. He has developed the basic theory
in a simple but thorough manner and in an easily understandable style. I have
used a preliminary version of this book from which to teach a senior undergrad-
uate course on elliptic curve cryptography. I was so pleased with the outcome
that I encouraged Andreas to publish the manuscript. I firmly believe that this
book is a very good starting point for anyone who wants to pursue the theory
of elliptic curves over finite fields and their applications to cryptography.

S. A. VANSTONE, April 1999






Preface

During the last twenty years the invention of public key cryptosystems, in con-
junction with the emerging computer technology, has opened new fields of appli-
cations for number theory and algebraic geometry, which were so far considered
as the “purest” branches of mathematics. Elliptic curves are among the most
promising tools in modern cryptography. This has raised new interest in the
topic not only within the mathematical community, but also on the part of en-
gineers and computer scientists, who are concerned with the implementation of
new cryptosystems.

My aim is to present a textbook for those who find it hard to learn about
elliptic curves from the more advanced treatments, and thus to lay the foun-
dations for studying these more complete references. To follow this book, only
undergraduate algebra is needed; the reader should basically have heard of poly-
nomial rings, field extensions and finite fields. Even this elementary approach
will eventually guide us towards questions at the forefront of current research,
like the problem of counting points on elliptic curves, which was satisfactorily
solved only a few years ago.

While many of the fascinating applications of elliptic curves like the fac-
torisation of integers or primality proofs deal with curves over prime fields only,
curves over fields of characteristic 2 are especially attractive in the cryptographic
context. This textbook treats curves in odd and even characteristic with equal
attention, referring to general arguments where possible and falling back on case
distinctions where necessary.

I am grateful to Reinhard Schertz, whose enthusiastic undergraduate lectures
raised my interest in elliptic curves, to Dieter Jungnickel, who suggested the
topic and marvelously supervised the advance of my thesis, from which this book
finally emerged, and to Leonard Charlap and David Robbins, whose excellent
report on elliptic curves formed the basis for my presentation. I thank Marialuisa
de Resmini and Scott Vanstone for encouraging the publication. And I am
especially indebted to Dirk Hachenberger, Dieter Jungnickel, Charles Lam and
Berit Skjernaa for the time they spent reading the manuscript and for their
valuable comments.

I hope that the reader has as much pleasure in reading this book as I had in
writing it.

ANDREAS ENGE






Chapter 1
Public Key Cryptography

Today’s widespread use of electronic networks in the economic world has raised
cryptography from a speciality of the military and secret services to a topic of
public interest, which concerns international organisations like the UNO and the
EU. Unlike conventional cryptosystems, public key cryptography is applicable
on a large scale base, in principle allowing secure and authorised communication
between any two persons in the world. In the following chapter we give a
brief introduction to the concepts of public key cryptography and present some
algorithms. We hereby focus on schemes for encryption and digital signatures
which can be generalised to arbitrary groups, especially to elliptic curve groups.
A comprehensive treatment of cryptographic issues is given in Stinson (1995)
and Menezes, van Oorschoot, Vanstone (1997).






Chapter 2

The Group Law on Elliptic
Curves

Elliptic curves can be equipped with an efficiently computable group law, so
that they are suited for implementing the cryptographic schemes of the previ-
ous chapter, as suggested first in Koblitz (1987) and Miller (1986). They are
particularly appealing because they achieve the same level of security as a fi-
nite field based cryptosystem with much shorter key lengths, which results in a
faster encryption and decryption process. Our aim in this chapter is to prove
the group law.

After presenting the necessary definitions we show that there is an intuitive
geometric composition law on an elliptic curve, involving lines and their inter-
section points with the curve. Some elementary computations result in simple
algebraic formulae which are suited for computer implementations. The compo-
sition law fulfils all group axioms, but strange enough, its associativity is hard
to prove. It can be shown in various ways:

The obvious approach is brute force computation, the explicit algebraic for-
mulae for adding two points on a curve being given. Unfortunately there are
several formulae, depending on the position of the points to be added, and so
an awful lot of case distinctions is needed. What is worse, the proof does not
reveal anything about the underlying algebraic and geometric structures and
is not only extremely tedious, but also extremely uninstructive. This seems
to have deterred most authors, for, to my knowledge, this approach cannot be
found in any publication.

Some authors concentrate on elliptic curves over the complex numbers, where
the additional analytic structure accounts for particular properties, see Koblitz
(1993), Lang (1978) or Lang (1987). But for implementational reasons we are
mainly interested in curves over finite fields, to which the analytic proofs do not
apply. Hence in this book we concentrate on purely algebraic approaches, which
work over any field. It is instructive, however, to relate our algebraic findings
to their analytic counterparts, and the reader is invited to take a closer look at
the books mentioned above.

Fulton presents a beautiful geometric proof in his book on algebraic curves
(see Fulton (1969), p. 125) after developing some general theory. The same
proof is reported in Husemoller (1987), Chapter 3. Other arguments use the
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Riemann-Roch theorem, which is presented at the end of Fulton’s book. These
approaches are ideal for specialists in algebraic geometry, in which case the stan-
dard references are Silverman (1986) and Silverman (1994). However, elliptic
curves are still quite “simple” from the algebraic-geometric point of view and
can be understood without knowing much of abstract algebraic geometry.

In this chapter we follow Charlap’s and Robbin’s elementary proof (1988).
On one hand, we explain the basic notions of the theory of algebraic curves,
so that the reader gets an introduction to this topic. On the other hand, it
is our aim to keep this exposition as elementary and concrete as possible. So
we specialise all results to the case of elliptic curves, where many of them can
be proved by explicit computations or more elementary arguments than in the
general case. Unlike Charlap and Robbins we consistently use the projective
point of view when working with the infinite point O, which appears naturally
in this setting, and thus avoid seemingly artificial constructions. Furthermore
we present a generalised version of the proof, which covers fields of any char-
acteristic, including the case of characteristic 2, which is highly relevant for

cryptography.



Chapter 3

Elliptic Curves over Finite
Fields

We have verified in the previous chapter that the points on an elliptic curve over
an arbitrary field form a group, which can be used to implement the public key
cryptosystems presented in the first chapter. Since by the algebraic formulae the
group operations eventually amount to computations in the field where the el-
liptic curve is defined, one has to choose a field with an efficiently implementable
arithmetic. Basically, this requirement narrows down to the finite fields. (While
the rational numbers and more generally number fields also allow exact com-
putations, they have two drawbacks: First, numbers may become arbitrarily
big, which destroys the efficiency of the operations. And more important, the
discrete logarithm problem on elliptic curves over these fields is easy to solve.)
So during this chapter, we consider the following situation:

Let k = F, be the finite field with ¢ elements and prime characteristic p,
and K = k be its algebraic closure. Let E be an elliptic curve which is defined
over k, i.e. whose defining coefficients a1, as, as, a4 and ag lie in k. As before
we denote by E the group of points on the curve with coordinates in K. The
group of k-rational points, i.e. the group of points on E with coordinates in k,
in which we are eventually interested, is denoted by Ej. Since k is finite, there
are only finitely many possibilities for the X- and Y-coordinates of points, and
Ej is a finite abelian group. We will see in Chapter 4 that it is mainly the
exact cardinality of Ej, which determines the security of a cryptosystem built in
this group. The biggest part of this chapter is devoted to the proof of Hasse’s
famous theorem, which gives an estimate on the cardinality of E}, stating that
the elliptic curve group has roughly as many elements as k itself. Precisely,

We follow very closely the excellent report Charlap, Robbins (1988), oc-
casionally putting a different emphasis. However, we take care to prove all
theorems for characteristic 2 as well.

While the results of the first seven sections hold in full generality for any
finite or infinite field k, we will apply them to finite fields only: namely to prove
Hasse’s Theorem in Section 3.8 and to compute the exact cardinality of Ej in
Chapter 5. In the last sections of this chapter we present some results on special
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classes of elliptic curves over finite fields and on the group structure of Ej.



Chapter 4

The Discrete Logarithm
Problem

The public key cryptosystems presented in Chapter 1 rely on the difficulty of
solving the discrete logarithm problem in certain groups: An adversary who
could efficiently compute discrete logarithms in the group underlying such a
cryptosystem would be able to break the system. So to judge the security of the
proposed cryptosystems we must have a closer look at algorithms for solving
discrete logarithm problems.

To provide a common framework for the following sections, we reformulate
the problem and fix some notations: Let G = (a) be a finite, multiplicatively
written cyclic group with generator o and known cardinality n and let 5 be
an element of G. The discrete logarithm problem is to compute an integer [
(which is denoted by log, 3) such that 3 = a!. The integer [ is determined
uniquely modulo n. The problem can on one hand be solved by a generic or
black box algorithm, which does not take into account the representation of group
elements. We only require that it be possible to efficiently multiply and invert
group elements and to test them for equality. We then solve the problem by these
elementary operations, starting with the given elements « and 5. The third
requirement may seem surprising since in most groups it is easy to test whether
two elements are equal; but it can be an issue in factor groups, which are given
modulo an equivalence relation, so that the same element may have different
representatives. An example is provided by the divisor class group of an elliptic
curve, where the problem is solved by working with the unique representatives
given by single points. Other examples are class groups of number fields or
divisor class groups of more general curves, in which cases this issue is more
serious.

It turns out, however, that the difficulty of the discrete logarithm problem
depends heavily on the representation of the group. For instance, it is trivial
for G = Z,, and a = 1. More generally it is easy to solve for G = Z,, and any
generator « of Z,, by the Euclidian algorithm. (Indeed, the discrete logarithm
problem in G can be reformulated to the task of computing an explicit isomor-
phism of G with Z,,.) Hence it is worthwhile to take the concrete representation
of the group into account when looking for an efficient solution to the discrete
logarithm problem. We will see in Section 4.4, for instance, that there are espe-
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cially good algorithms for the multiplicative groups of finite fields. Some elliptic
curves are also cryptographically insecure, which we will show in Section 4.5,
using the preparations made in the previous chapter.



Chapter 5

Counting Points on Elliptic
Curves

We have seen in the previous chapter that the security of a discrete logarithm
based cryptosystem relies mainly on the order of the underlying group, unless
special structures allow more efficient algorithms for breaking the system. If the
group order is large enough, then square root attacks like Shanks’s baby-step
giant-step or Pollard’s p-methods are not applicable. To make the Pohlig—
Hellman attack impractical, two different approaches are conceivable.

On one hand, it is possible to choose a group with unknown order, so that
the Pohlig—Hellman algorithm does not work. This is a risky game, however,
since for no known type of groups there is a theoretical barrier to compute
their orders. For instance, the problem is not known to be NP-complete for
any class of groups. Hence, there is a certain chance that an adversary already
has an algorithm at hands for determining the group order. Moreover, while
this attitude allows to encrypt messages, the signature algorithms of Chapter 1
require that the group order be known.

On the other hand, it is a good strategy to make sure that the group order
contains a large prime factor to prevent the Pohlig-Hellman attack. In the case
of elliptic curves this can be achieved in various ways. First, by the complex
multiplication method, curves with suitable orders can be designed specifically
(Atkin, Morain (1993) and Lay, Zimmer (1994)). Second, it is possible to choose
special classes of curves whose cardinalities are easy to determine, like supersin-
gular curves (cf. Theorem 3.72), or curves which are defined over a small field,
but where the group is chosen over a field extension (cf. Theorem 3.66). While
supersingular curves are not recommendable according to Section 4.5, nothing
can so far be hold against curves defined over subfields. However, there is a
certain reluctance concerning classes of special curves and a widespread belief
that the most secure way of selecting a curve is to fix an underlying field, ran-
domly choose a curve, i.e. defining coefficients, and compute the group order
until it is divisible by a large prime. This approach is feasible today due to the
algorithmic progress made in the past fifteen years.
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Errata

The following typos and errors have been found by Wu Ting. Many thanks!

e On p. 15, 1. -7, the a3 in the equation of E should be an azY .
e On p. 31, 1. -12, Oy (p)(E) should read O, (py(E').

e On p. 35, 1. 5, the divisor of the line should be given as

div(l*) = (P) + (P) — 2(0).

e Onp. 64, 1. 1, it is erroneously deduced from degu = 0 that u is a constant.

However, u is a rational function in X and not a polynomial, so the only
thing one can say is that u = 5 for polynomials f and g of the same
degree n. Then one has Du = %DX. Notice that deg(f'g — f¢') <
2n — 2: If p t n, then deg(f'g) = deg(fg') = 2n — 1, and the leading
terms coincide; if p|n, then already deg(f’g), deg(fg’) < 2n — 2. Hence
ordp (%) > 4. Since ordp DX > —3, we obtain ordp(Du) > 1.
As before one shows that ordp D(vY’) > 0 and concludes that ordp Dr >
min{ordp Du,ordp D(vY)} > 0.
This argumentation makes the proof a bit twisted, and it would be simpler
to put r = HTQY with polynomials f, g and h right from the beginning.
Then d = ordp r = 0 implies deg f = degh = n for some n and degg <
n — 2. One computes

(f'h— fB'YDX + (¢'h — gh')Y DX + ghDY
e '

(f’h—fh/)DX)
h2

Dr =

As above, one concludes that orde ( > 1; similarly, deg(g'h—
gh') < 2n — 3 implies that ordp (@ YDX) >6—-3-3=0; and

we finally have deg ghh# < 0, so that the order of this term in O is also
non-negative.

e On p. 73, the case corresponding to the second square dot should be
(m—1)3 =1 (mod p); this is only a typo, the proof itself is correct.

e On p. 84, all the sums over various X — X (P) in expressions for 1), should
be products.

And some further errors detected by an attentive reader.
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e On p. 87, and sub- and consequently in Schoof’s algorithm on pp. 135-138,
all occurrences of 3X?2 + 2asX + a4 — a1Y should be garnished with the
opposite sign.



