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Abstract

In [3] and [4] Arsham presents a new Phase 1 algorithm for the
simplex method of linear programming, which allegedly obviates the
use of artificial variables. He claims in [4] that the new algorithm will
terminate successfully or indicate the infeasibility of the problem after
a finite number of iterations and precises in [3] that the number of
iterations is at most number of constraints.

Providing this claim to be true, we point out some consequences
for the complexity of the simplex method. We give a counterexam-
ple, where Arsham’s algorithm declares the infeasibility of a feasible
problem.
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1 Initialization of the Simplex Algorithm

In order to solve a general linear program with any variant of the simplex
algorithm [6] it is necessary to find a feasible vertex and hence a feasible basic
solution of the polyhedron specified by the constraints, which part of the
algorithm is usually referred to as “Phase 1”. In [3] and [4] Arsham describes
a new Phase 1 algorithm which allegedly gets around the introduction of
artificial variables, and moreover needs at most as many pivot steps as there
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are constraints.1 For a better comparison with the usual approaches we
briefly relate the two most common Phase 1 algorithms in the following
subsections before turning our attention to Arsham’s technique.

Arsham considers a general LP of the form

max dTx subject to Fx ≤ f, Gx ≥ g, Hx = h, x ≥ 0

with f , g, h ≥ 0. He uses well-known transformation techniques to obtain a
problem in standard form

(LP) max cTx subject to Ax = b, x ≥ 0,

where A is an m×n matrix of full row rank and b ≥ 0. Hence we can assume
in the following that an LP is given in standard form, and Phase 1 consists
of finding a feasible basic solution to such a problem.

1.1 Solving an auxiliary problem

Probably the most common approach to Phase 1 is introducing artificial
variables, one for each equality constraint, and solving the auxiliary problem

(AP) max l1TAx subject to Ax+ y = b, x, y ≥ 0,

where l1 = (1, . . . , 1)T is the all-one-vector. Note that a feasible solution
to (AP) is given by x = 0, y = b, and that the objective “max l1TAx” is
equivalent to “min l1T y”, so that (AP) is bounded. The auxiliary problem
is solved by the usual simplex algorithm. (It is possible, however, to delete
the column of an artificial variable as soon as it has left the basis.) (LP)
is feasible if and only if the optimal objective value of (AP) is l1T b, which
means that all artificial variables are zero. Then, if the optimal basis for
(AP) contains no artificial variable, it is a feasible basis for (LP). Otherwise,
since the artificial variables are zero and the matrix A has full rank, it is
possible to pivot all artificial variables out of the basis to obtain an initial
basis for (LP).

1.2 The Big-M-Method

An obvious drawback of the auxiliary problem of the previous section is that
it does not take into account the objective function we are actually interested
in maximising, and outputs an arbitrary vertex of the feasibility region. It
would be desirable, however, to find in Phase 1 a basic solution which has

1This complexity result is announced in the abstract of [3]: ”This phase terminates
successfully (or indicates the infeasibility of the problem) with a finite number of itera-
tions, which is at most equal to the number of constraints.” and Lemma 1 in [3]: ”By
following Steps 3–5 a complete basic variable set can always be genereated (with at most
m iterations), provided the feasible region is not empty.”
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chances of being closer to the optimum. This is exactly the purpose of the
Big-M method. Again, artificial variables are introduced, but the objective
function is more or less preserved. Indeed we consider the problem

(LP(M)) max cTx−M l1T y subject to Ax+ y = b, x, y ≥ 0.

Here, M can either be set numerically as a “sufficiently big” constant or be
treated symbolically as a constant “bigger than any real number” such that
α1M + β1 ≤ α2M + β2 holds exactly if (α1, β1) is lexicographically less or
equal (α2, β2) for real numbers α1, β1, α2, β2. Again, (LP(M)) is feasible by
letting x = 0, y = b. If (LP(M)) has an optimal solution with all artificial
variables equal to zero, then this is an optimal solution to (LP); if (LP(M))
is unbounded with an extremal free direction in which the objective grows
and which does not involve any artificial variables, then (LP) is unbounded;
in any other case, (LP) is infeasible.

The high negative coefficients in front of the artificial variables assure
that the basic aim of this Phase 1 algorithm is to eliminate these variables
from the basis, without losing the original objective function out of view.
Again, it is possible to delete the column corresponding to an artificial vari-
able as soon as it has left the basis.

1.3 Arsham’s Approach

The idea of the new Phase 1 algorithm is to start with an empty basis,
represented by the tableau

A b

c

with A = A, b = b and c = c. Then as long as this is possible, the basis
is augmented by a new variable. We describe the process in detail in our
words:

1. If the basis is full, Phase 1 is finished successfully, and the optimization
process of Phase 2 can be started. Otherwise mark all columns as
“unexamined” and go to Step 2).

2. Pivot column choice: Choose the as yet unexamined non-basic column
s with the biggest reduced cost coefficient cs, be it negative or not. If
there are ties, choose the first possible column. If none such column
exists, state the infeasibility of the problem and stop.

3. Pivot row choice: If there is a row r, not yet occupied by a basic
variable, such that ars > 0 and

br
ars

= min

{
bi
ais

: ais > 0, i = 1, . . . ,m

}
,
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then the basis is augmented by the variable xs in row r, and Gauß–
Jordan row operations turn the s-th column into the r-th unit vector.
Then go to Step 1). (If there are ties for the pivot row, choose the first
possible one.) If no row exists with the properties mentioned above
mark the column s as “examined” and go to Step 2).

Unfortunately, there are cases where the algorithm declares a feasible prob-
lem infeasible; we shall give a counterexample in Section 3.

1.4 Where Are the Artificial Variables?

Arsham claims that his algorithm “obviates the use of artificial variables”
([3] and [4], in the abstracts). This is true in a very literal sense, but the
artificial variables are still present implicitly: Notice that the initial tableau

A b

c

corresponds to the tableau obtained from the problem

(LP’) max cTx subject to Ax+ y = b, x, y ≥ 0

for the basis made up by the artificial variables, except that the unit matrix
in the basic columns is omitted. Now augmenting the basic variable set in
Arsham’s algorithm corresponds to pivoting an artificial variable out of the
basis for (LP’) and deleting the corresponding column afterwards. Hence
Arsham’s algorithm is very similar to Phase 1 via an auxiliary problem or
the Big-M method with the pivoting rule: “Use Dantzig’s column rule as
far as possible, but don’t bother about negative reduced cost coefficients,
and perform pivot steps only that change a basic artificial variable against
a non-basic original variable.” The main difference is that the original ob-
jective function is kept instead of choosing an objective that encourages the
elimination of artificial variables; this is made up for by not allowing pivot
steps that exchange two original or two artificial variables.

2 The Complexity of Linear Programming

Shortly after Dantzig’s discovery of the simplex method researchers set for
the quest of the polynomial time pivot rule. Strange enough, the apparent
practicability of the simplex algorithm is in striking contrast to the theo-
retical results obtained so far: A great deal of pivot rules have been proved
to require an exponential number of pivot steps for special problem classes
(see [10]), and the behavior of the other rules is essentially unknown. Part
of the mystery is resolved by probabilistic analyses (see [5, 2, 1, 8]).

It was not until 1979 that the polynomial time solvability of linear pro-
grams was shown, and remarkably by algorithms that have not much in
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common with the simplex algorithm [7, 9]. Their running times are poly-
nomial in the coding length of the problem, but they depend on the size of
the numbers involved.

Arsham claims that his Phase 1 algorithm “terminates successfully (or
indicates the infeasibility of the problem) after a finite number of iterations,
which is at most equal to the number of constraints” ([3], in the abstract and
Lemma 1), respectively, “is finite” ([4], Lemma 1), and indeed his “proof”
would imply that the number of pivot steps is bounded by the number of
constraints.

We propose to show that this would lead to a strongly polynomial pivot
rule for the simplex algorithm, i. e. the number of pivot steps would be
bounded by a polynomial in m and n, independently of the size of the
occurring numbers. Precisely, if m is the number of constraints and n the
number of variables in (LP), then O(m+ n) pivot steps would be required.

We assume that (LP) is feasible; a possible infeasibility could be detected
by Arsham’s algorithm in at most m steps. Considering the dual problem

(DP) min bT y subject to AT y ≤ c,

which can easily be rewritten in standard form, we set up a new problem
(LDP) by joining the constraints of (LP) and (DP) and adding the constraint

cTx− bT y = 0.

The choice of objective function does not matter. By the Strong Duality
Theorem, if (LDP) is infeasible, then (LP) is unbounded; a free direction on
which the objective grows infinitely can be obtained as the optimal solution
of the auxiliary problem

max cTd subject to Ad = 0, d ≥ 0, cTd ≤ 1.

If (LDP) is feasible, then the x-coordinates of a feasible point of (LDP) yield
an optimal solution of (LP). But the feasibility of (LDP) could be checked
by the new Phase 1 algorithm in at most m+ n+ 1 pivot steps.

3 A Counterexample

An example of a feasible problem which is declared infeasible by Arsham’s
algorithm is given by the following problem:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1 , x2 ≥ 2, x ≥ 0 .

After adding a surplus variable we get:

max 3x1 + x2 − 4x3

subject to x1 + x2 − x3 = 1 , x2 − s1 = 2, xi, s1 ≥ 0 .
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The algorithm starts with the following tableau:

x1 x2 x3 s1
? (1) 1 −1 0 1 ←
? 0 1 0 −1 2

3 1 −4 0
↑

(1)

As the variable x1 has the biggest reduced cost coefficient, the first column
is chosen as the pivot column. Its entry in the second row is 0, so the first
row becomes the pivot row. Hence, x1 enters the basis and we perform the
corresponding Gauss-Jordan row operations to obtain the following tableau:

x1 x2 x3 s1
x1 1 1 −1 0 1
? 0 1 0 −1 2

0 −2 −1 0
↑ ↑ ↑

(2)

We look again for a candidate to enter the basis. First, we try s1, which
has the biggest reduced cost coefficient, but we find no positive entry in
this pivot column and thus no pivot element. We mark this column as
“examined”. The same happens if we choose the third column corresponding
to x3. Finally we select the second column as pivot column, but here we
find the smallest column ratio in an already occupied row, namely the first
one. At this point all non-basic columns are marked as “examined”. The
algorithm has not found any non-basic variable which could enter the basis
and therefore terminates and states that the problem is infeasible.2

However, this problem is feasible, as

x1 = 0 , x2 = 2 , x3 = 1 , s1 = 0

is a feasible basic solution.
The algorithm terminates with a wrong result! What is the reason for

its failure?
Let us have a look at the basic solutions of this problem:

2In the proof of the finiteness and correctness of the algorithm Arsham mentions that
one may have to try all possibilities of performing Gauss–Jordan row operations, but he
gives no explicit instructions how and when to do it; furthermore there is no hint to this
necessity in the description of the algorithm itself. Particularly, Step 4 of the algorithm
declares the problem to be infeasible if there is no other nonbasic variable which is a
candidate to enter the basic variable set. Notice that testing all possible pivot sequences
could require an exponential amount of work before a problem can actually be declared
infeasible.
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Basis x1 x2 x3 s1
{x1, x2} −1 2 0 0 not feasible
{x1, x3} – 0 – 0 no solution
{x1, s1} 1 0 0 −2 not feasible
{x2, x3} 0 2 1 0 feasible
{x2, s1} 0 1 0 −1 not feasible
{x3, s1} 0 0 −1 −2 not feasible

As we see there is only one feasible basis, which does not contain x1. But
the algorithm chooses exactly x1 as the first basic variable. Then it tries
to occupy the other rows, i. e. to complete the basis by other variables
without ever giving the variable x1 a chance of leaving the basis again. This
causes the erroneous behavior of the algorithm. Allowing pivot steps that
exchange a basic variable against a non-basic variable would remedy this
problem, but destroy the polynomial time bound — notice that the only
pivot step in Tableau (2), the one that exchanges x1 and x2, would even
lead to cycling in our example.

So the quest for a polynomial time pivot row is not yet finished!
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